Lecture 6 2023/2024

Microwave Devices and Circuits for Radiocommunications

2023/2024

- 2C/1L, MDCR
- Attendance at minimum 7 sessions (course or laboratory)
- Lectures- associate professor Radu Damian
 - Tuesday 16-18, Online, P8
 - E 50% final grade
 - <u>problems</u> + (2p atten. lect.) + (3 tests) + (bonus activity)
 - first test L1: 20-27.02.2024 (t2 and t3 not announced, lecture)
 - 3att.=+0.5p
 - all materials/equipments authorized

2023/2024

- Laboratory associate professor Radu Damian
 - Tuesday o8-12, II.13 / (o8:10)
 - L 25% final grade
 - ADS, 4 sessions
 - Attendance + personal results
 - P 25% final grade
 - ADS, 3 sessions (-1? 20.02.2024)
 - personal homework

Materials

Lists

Materials

Course Slides

Bonus-uri acumulate (final) Studenti care nu pot intra in examen

MDCR Lecture 1 (pdf, 5.43 MB, en, ss)

MDCR Lecture 2 (pdf, 3.67 MB, en, ss) MDCR Lecture 3 (pdf, 4.76 MB, en, ss) MDCR Lecture 4 (pdf, 5.58 MB, en, se)

http://rf-opto.etti.tuiasi.ro

Staff Rese Photos **Online Exams** In order to participate at online exams you must get ready following

4. An also made manner also and also be-

Site

Microwave and Optoelectronics Laboratory

We are enlisted in the Telecommunications Department of the Electronics, Telecommunication and Information Technology Faculty (ETTI) from the "Gh. Asachi" Technical University (TUIASI) in Iasi, Romania

We currently cover inside ETTI the fields related to:

- Microwave Circuits and Devices
- Optoelectronics
- · Information Technology

Site

- New online exams
 - Supplemental points for lectures 3, 4, 5

r.	Titlu	Start	Stop	Text	Subiecte			
1	Profile photos	05/03/2024; 08:00	01/06/2024; 08:00	Online "exam" created f	fotografii en.pdf			
2	Laboratory 2	19/03/2024; 08:00	10/04/2024; 18:00	Individual subjects for	Subjects lab2 2024.pdf			
3	Lecture 5 Network Analysis - supplemental points	19/03/2024; 14:00	10/04/2024; 11:00	Supplemental points for	Supliment c5 2024.pdf			
4	Lecture 3 Impedance Matching - supplemental points	19/03/2024; 08:00	03/04/2024; 11:00	Supplemental points for	Supliment c3 2024.pdf			
5	Lecture 4 Impedance Transformers - supplemental points	19/03/2024; 08:00	03/04/2024; 11:00	Supplemental points for	Supliment c4 2024.pdf			
6	Laboratory 1	05/03/2024; 08:00	27/03/2024; 14:00	Individual subjects for	Subjects lab1 2024.pdf			

Materials

- RF-OPTO
 - http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering",
 Wiley; 4th edition, 2011
 - 1 exam problem Pozar
- Photos
 - sent by email/online exam > Week4-Week6
 - used at lectures/laboratory

Online – Registration no.

access to online exams requires the password received by email

Password

received by email

Online exam manual

- The online exam app used for:
 - lectures (attendance)
 - laboratory
 - project
 - examinations

Materials

Other data

Manual examen on-line (pdf, 2.65 MB, ro, ■)
Simulare Examen (video) (mp4, 65 12 MB, ro, ■)

Microwave Devices and Circuits (Englis

Examen online

- always against a timetable
 - long period (lecture attendance/laboratory results)
 - short period (tests: 15min, exam: 2h)

Announcement 23:59 (10/05/2020) Support material 00:05 (11/05/2020) University Support material 00:05 (11/05/2020) University Support material 00:07 (11/05/2020) University Support material 00:07 (11/05/2020) University Support material 00:05 (11/05/2020) Univ

Announcement

This is a "fake" exam, introduced to familiarize you with the server interface and to perform the necessary actions during an exam: thesis scan, selfie, use email for co

Server Time

All exams are based on the server's time zone (it may be different from local time). For reference time on the server is now:

10/05/2020 23:59:16

Online results submission

many numerical values/files

														510										
Schema finala	Rezultate - castig	Rezultate - zgomot	Fisier justificare calcul (factor andrei)	(ontional)	parmetri	r T2, fisier i parmetri S		72	Z 3	Z4	Z5	Z6	27	Ze1	Zo1	Ze2	Zo2	Ze3	Zo3	Ze4	Zo4	Ze5	Zo5	Ze6
86 - 5428 - 259		86 - 5428 - 261	86 - 5428 - 316	-	86 - 5428 - 314	86 - 5428 - 315	148.33	155.88	202.12	164.35	180.91	30.29	185.19	79.9	37	68.89	45.14	61.83	45.05	57.97	46.02	61.85	45.05	68.8
A CONTRACTOR OF THE PARTY OF TH	5622 -	5622 -	<u>86 -</u> <u>5622 -</u> <u>316</u>	5622 -	5622 -	86 - 5622 - 315	26.97	153.5	34.64	35.79	55.56	26.212	10.693	0	0	0	0	0	0	0	0	0	0	0
86 - 5488 - 259	86 - 5488 - 260	86 - 5488 - 261	86 - 5488 - 316	86 - 5488 - 262	86 - 5488 - 314	86 - 5488 - 315	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
86 - 5391 - 259		The second secon	86 - 5391 - 316	-	1.7	15	50	50	50	50	50	50	50	70.14	40.39	61.85	44.59	55.7	45.2	54.89	45.38	58.65	45.8	70.0
86 - 5664 - 259		86 - 5664 - 261	86 - 5664 - 316	-	86 - 5664 - 314	86 - 5664 - 315	168.02	150.5	178.28	133.75	92.12	121.67	144.48	94.36	36.19	70.77	42.56	65.69	42.05	55.17	42.29	65.59	42.05	70.7
I The second sec	5665 -	5665 -	86 - 5665 - 316	5	CONTRACT OF THE PARTY OF THE PA	86 - 5665 - 315	162.2	80.8	209.2	140.85	135.1	183.7	167.6	94.58	36.15	78.16	39.77	65.57	45.05	65.57	45.05	78.16	39.77	94.5
86 - 5433 - 259	77800 000 1000	86 - 5433 - 261	86 - 5433 - 316	-	86 - 5433 - 314	86 - 5433 - 315	165.138	106.228	3 226.157	130.134	72.71	180.177	164.616	101.36	36.11	77.22	42.49	68.02	45.62	60	45.42	68.02	45.62	77.2
86 - 5608 - 259	86 - 5608 - 260	86 - 5608 - 261	86 - 5608 - 316	5	86 - 5608 - 314	86 - 5608 - 315	150.84	152.5	30.94	32.37	54.36	19.837	29.85	64.14	40.145	54.32	46.32	53.8	46.7	53.8	46.7	54.32	46.32	54.9
86 - 5555 - 259	86 - 5555 - 260	86 - 5555 - 261	86 - 5555 - 316	7	86 - 5555 - 314	86 - 5555 - 315	168.001	150.288	178.399	133.115	92.491	121.257	144.126	97.05	36.16	71.13	43.09	65.45	42.12	55.66	42.18	65.45	42.12	71.

Online results submission

many numerical values

Online results submission

Grade = Quality of the work + + Quality of the submission General theory

Microwave Network Analysis

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
- Oscillators and mixers?

Network Analysis

- We try to separate a complex circuit into individual blocks
- These are analyzed separately (decoupled from the rest of the circuit) and are characterized only by the port level signals (black box)
- Network-level analysis allows you to put together individual block results and get a total result for the entire circuit

Impedance matrix – Z

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$

$$V_1 = Z_{11} \cdot I_1 + Z_{12} \cdot I_2$$
$$V_2 = Z_{21} \cdot I_1 + Z_{22} \cdot I_2$$

$$V_1 = Z_{11} \cdot I_1 \Big|_{I_2 = 0}$$
 $Z_{11} = \frac{V_1}{I_1} \Big|_{I_2 = 0}$

 $V_1 = Z_{11} \cdot I_1 \big|_{I_2=0}$ $Z_{11} = \frac{V_1}{I_1} \Big|_{I_3=0}$ Z11 — input impedance with open-circuited output

$$Z_{11} = \frac{V_1}{I_1}\bigg|_{I_2 = 0} \qquad Z_{12} = \frac{V_1}{I_2}\bigg|_{I_1 = 0} \qquad Z_{21} = \frac{V_2}{I_1}\bigg|_{I_2 = 0} \qquad Z_{22} = \frac{V_2}{I_2}\bigg|_{I_1 = 0}$$

Admittance matrix -Y

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

$$I_1 = Y_{11} \cdot V_1 + Y_{12} \cdot V_2$$
$$I_2 = Y_{21} \cdot V_1 + Y_{22} \cdot V_2$$

$$I_1 = Y_{11} \cdot V_1 \big|_{V_2 = 0}$$
 $Y_{11} = \frac{I_1}{V_1} \Big|_{V_2 = 0}$ Y11 — input admittance with short-circuited output

$$Y_{11} = \frac{I_1}{V_1} \bigg|_{V_2 = 0}$$
 $Y_{12} = \frac{I_1}{V_2} \bigg|_{V_1 = 0}$ $Y_{21} = \frac{I_2}{V_1} \bigg|_{V_2 = 0}$ $Y_{22} = \frac{I_2}{V_2} \bigg|_{V_1 = 0}$

Network Analysis

- Each matrix is best suited for a particular mode of port excitation (V, I)
 - matrix H in common emitter connection for TB: I_B, V_{CE}
 - matrices provide the associated quantities depending on the "attack" ones
- Traditional notation of Z, Y, G, H parameters is in lowercase (z, y, g, h)
- In microwave analysis we prefer the notation in uppercase to avoid confusion with the normalized parameters

$$z = \frac{Z}{Z_0} \qquad y = \frac{Y}{Y_0} = \frac{1/Z}{1/Z_0} = \frac{Z_0}{Z} = Z_0 \cdot Y$$

$$z_{11} = \frac{Z_{11}}{Z_0} \qquad y_{11} = \frac{Y_{11}}{Y_0} = Z_0 \cdot Y_{11}$$

ABCD (transmission) matrix

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$

$$V_1 = A \cdot V_2 + B \cdot I_2$$
$$I_1 = C \cdot V_2 + D \cdot I_2$$

$$\begin{bmatrix} V_2 \\ I_2 \end{bmatrix} = \frac{1}{A \cdot D - B \cdot C} \cdot \begin{bmatrix} D & -B \\ -C & A \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ I_1 \end{bmatrix}$$

$$A = \frac{V_1}{V_2}\Big|_{I_2=0}$$
 $B = \frac{V_1}{I_2}\Big|_{V_2=0}$ $C = \frac{I_1}{V_2}\Big|_{I_2=0}$ $D = \frac{I_1}{I_2}\Big|_{V_2=0}$

ABCD (transmission) matrix

- This 2X2 matrix characterizes the "input"/"output" relation
- Allows easy chaining of multiple two-ports

ABCD (transmission) matrix

Example for ABCD matrix

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 50 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 0 & 50 \cdot j \\ \frac{j}{50} & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ \frac{1}{25} & 1 \end{bmatrix} = \begin{bmatrix} 3 \cdot j & 25 \cdot j \\ \frac{j}{25} & 0 \end{bmatrix}$$

$$V_L = \frac{V}{A} = \frac{3\angle 0^{\circ}}{3 \cdot i} = 1\angle -90^{\circ}$$

(Somewhat!) Specific theory

Microwave Network Analysis

The lossless line

$$P_{avg} = \frac{1}{2} \cdot \frac{\left|V_0^+\right|^2}{Z_0} \cdot \left(1 - \left|\Gamma\right|^2\right)$$

- Average power flow is constant along the line
 - (no P_{avg}(z))
 - can be measured
- We can use the power to characterize the amplitude of a signal
 - a very "energetic" (basic physics) point of view
 - more power = "more" signal

Scattering parameters

$$\begin{bmatrix} V_1^- \\ V_2^- \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \cdot \begin{bmatrix} V_1^+ \\ V_2^+ \end{bmatrix}$$

$$S_{11} = \frac{V_1^-}{V_1^+} \bigg|_{V_2^+ = 0} \quad S_{21} = \frac{V_2^-}{V_1^+} \bigg|_{V_2^+ = 0}$$

• $V_2^+ = 0$ meaning: port 2 is terminated in matched load to avoid reflections towards the port

$$\Gamma_2 = 0 \longrightarrow V_2^+ = 0$$

$$\begin{bmatrix} V_1^- \\ V_2^- \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \cdot \begin{bmatrix} V_1^+ \\ V_2^+ \end{bmatrix}$$

$$S_{11} = \frac{V_1^-}{V_1^+} \Big|_{V_2^+ = 0} = \Gamma_1 \Big|_{\Gamma_2 = 0}$$

$$S_{21} = \frac{V_2^-}{V_1^+} \Big|_{V_2^+ = 0} = T_{21} \Big|_{\Gamma_2 = 0}$$

- S11 is the reflection coefficient seen looking into port 1 when port 2 is terminated in matched load
- S21 is the transmission coefficient from port 1 (second index!) to port 2 (first index!) when port 2 is terminated in matched load

Generalized Scattering Parameters

We define the power wave amplitudes a and b

$$a=rac{V+Z_R\cdot I}{2\cdot\sqrt{R_R}}$$
 the incident power wave $Z_R=R_R+j\cdot X_R$ Any complex impedance, named reference impedance $b=rac{V-Z_R^*\cdot I}{2\cdot\sqrt{R_R}}$ the reflected power wave

 Total voltage and current in terms of the power wave amplitudes

$$V = \frac{Z_R^* \cdot a + Z_R \cdot b}{\sqrt{R_R}}$$

$$I = \frac{a - b}{\sqrt{R_R}}$$

Power waves

When the load is conjugately matched to the generator

$$Z_g = Z_L^*$$
 $P_{L_{\text{max}}} = \frac{1}{2} \cdot |a|^2 = \frac{V_0^2}{8 \cdot R_L}$

Power reflection: L4

$$Z_{L} = Z_{i}^{*} \qquad P_{L \max} \equiv P_{a}$$

$$\Gamma = \frac{Z - Z_{0}^{*}}{Z + Z_{0}}$$

$$Z_{L} \neq Z_{i}^{*} \qquad P_{r} = P_{a} \cdot \left|\Gamma\right|^{2} \qquad P_{L} = P_{a} - P_{r} = P_{a} - P_{a} \cdot \left|\Gamma\right|^{2} = P_{a} \cdot \left(1 - \left|\Gamma\right|^{2}\right)$$

Power reflection: L5

$$P_{L \max} = P_{a} = \frac{1}{2} \cdot |a|^{2} \qquad P_{L} = \frac{1}{2} \cdot |a|^{2} - \frac{1}{2} \cdot |b|^{2} \qquad \Gamma_{p} = \frac{b}{a} = \frac{V - Z_{R}^{*} \cdot I}{V + Z_{R} \cdot I} = \frac{Z_{L} - Z_{R}^{*}}{Z_{L} + Z_{R}}$$

$$P_{L} = \frac{1}{2} \cdot |a|^{2} - \frac{1}{2} \cdot |a|^{2} \cdot |\Gamma_{p}|^{2} \qquad P_{L} = P_{a} \cdot \left(1 - |\Gamma_{p}|^{2}\right) \qquad P_{r} = P_{a} \cdot |\Gamma_{p}|^{2} = \frac{1}{2} \cdot |b|^{2}$$

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$\begin{bmatrix} b_{2} \\ b_{2} \end{bmatrix} \begin{bmatrix} S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a_{2} \\ a_{2} \end{bmatrix}$$

$$S_{11} = \frac{b_{1}}{a_{1}} \Big|_{a_{2}=0} \qquad S_{22} = \frac{b_{2}}{a_{2}} \Big|_{a_{1}=0}$$

S₁₁ and S₂₂ are reflection coefficients at ports
 1 and 2 when the other port is matched

 S₂₁ si S₁₂ are signal amplitude gain when the other port is matched

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$|S_{21}|^2 = \frac{Power\ in\ Z_0\ load}{Power\ from\ Z_0\ source}$$

- a,b
 - information about signal power AND signal phase
- S_{ij}
 - network effect (gain) over signal power including phase information

Measuring S parameters - VNA

Vector Network Analyzer

Figure 4.7
Courtesy of Agilent Technologies

Even/Odd Mode Analysis

Even/Odd Mode Analysis

- useful method, necessary even for multiple ports
- \blacksquare example, resistors, two port circuit

assume we want to compute Y₁₁

$$Y_{11} = \frac{I_1}{V_1}\Big|_{V_2=0}$$

 $E_{2} = 0$

$$\begin{split} R_{ech} &= 100\Omega \, || \, (50\Omega + 25\Omega \, || \, 50\Omega) = \\ &= 100\Omega \, || \, (50\Omega + 16.67\Omega) = 100\Omega \, || \, 66.67\Omega = 40\Omega \end{split}$$

$$Y_{11} = \frac{I_1}{V_1} \bigg|_{V_2 = 0} = 0.025S$$

- Even/Odd mode analysis benefit from the existence of symmetry planes in the circuit
 - existing or

when exciting the ports with symmetric/anti-symmetric sources the symmetry planes are transformed into:

the combination of any two sources is equivalent for linear circuits with the superposition of:

- In linear circuits the superposition principle is always true
 - the response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually

```
Response (Source1 + Source2) =
= Response (Source1) + Response (Source2)
```

Response(ODD + EVEN) = Response(ODD) + Response(EVEN)

We can benefit from existing symmetries!!

Even/Odd mode analysis

$$R_{ech}^{e} = 50\Omega + 50\Omega = 100\Omega$$

$$I_{1}^{e} = \frac{E^{e}}{R_{ech}^{e}} = \frac{E_{1}/2}{100\Omega} = \frac{E_{1}}{200\Omega}$$

EVEN → symmetry plane open circuit

$$R_{ech}^{o} = 50\Omega | | 50\Omega = 25\Omega$$

 $I_{1}^{o} = \frac{E^{o}}{R_{ech}^{o}} = \frac{E_{1}/2}{25\Omega} = \frac{E_{1}}{50\Omega}$

ODD → symmetry plane **virtual ground**

superposition principle

$$I_{1} = I_{1}^{e} + I_{1}^{o} = \frac{E_{1}}{200\Omega} + \frac{E_{1}}{50\Omega} = \frac{E_{1}}{40\Omega}$$

$$V_{1} = V_{1}^{e} + V_{1}^{o} = E_{1}$$

$$Y_{11} = \frac{I_1}{V_1} = \frac{1}{40\Omega} = 0.025S$$

- In linear circuits we can use the superposition principle
- advantages
 - reduction of the circuit complexity
 - decrease of the number of ports (main advantage)

Response (ODD + EVEN) = Response (ODD) + Response (EVEN)

We can benefit from existing symmetries !!

Power dividers and directional couplers

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
- Oscillators and mixers

Introduction

Power dividers and couplers

- Desired functionality:
 - division
 - combining
- of signal power

Figure 7.1

© John Wiley & Sons, Inc. All rights reserved.

Balanced amplifiers

Matching

feedback amplifier

- also known as T-Junctions
- characterized by a 3x3 S matrix

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$$

- the device is reciprocal if it does not contain:
 - anisotropic materials (usually ferrites)
 - active circuits
- to avoid power loss, we would like to have a network that is:
 - lossless, and
 - matched at all ports
 - to avoid reflection power "loss"

reciprocal

$$[S] = [S]^{t} S_{ij} = S_{ji}, \forall j \neq i$$
$$S_{12} = S_{21}, S_{13} = S_{31}, S_{23} = S_{32}$$

matched at all ports

$$S_{ii} = 0, \forall i$$
 $S_{11} = 0, S_{22} = 0, S_{33} = 0$

then the S matrix is:

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

reciprocal, matched at all ports, S matrix:

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

- lossless network
 - all the power injected in one port will be found exiting the network on all ports

$$[S]^* \cdot [S]^t = [1] \qquad \sum_{k=1}^{N} S_{ki} \cdot S_{kj}^* = S_{ij}, \forall i, j$$
$$\sum_{k=1}^{N} S_{ki} \cdot S_{ki}^* = 1 \qquad \sum_{k=1}^{N} S_{ki} \cdot S_{kj}^* = 0, \forall i \neq j$$

lossless network

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix} \qquad \sum_{k=1}^{N} S_{ki} \cdot S_{ki}^* = 1$$

$$\sum_{k=1}^{N} S_{ki} \cdot S_{kj}^* = 0, \forall i \neq j$$

6 equations / 3 unknowns

$$|S_{12}|^2 + |S_{13}|^2 = 1$$
 $S_{13}^* S_{23}^* = 0$
 $|S_{12}|^2 + |S_{23}|^2 = 1$ $S_{12}^* S_{13}^* = 0$
 $|S_{13}|^2 + |S_{23}|^2 = 1$ $S_{23}^* S_{12}^* = 0$

no solution is possible

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

- 6 equations / 3 unknowns
 - no solution is possible
- A three-port network cannot be simultaneously:
 - reciprocal
 - lossless
 - matched at all ports
- If any one of these three conditions is relaxed, then a physically realizable device is possible

Nonreciprocal Three-Port Networks

- usually containing anisotropic materials, ferrites
- nonreciprocal, but matched at all ports and lossless $S_{ij} \neq S_{ji}$
- S matrix

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{21} & 0 & S_{23} \\ S_{31} & S_{32} & 0 \end{bmatrix}$$

6 equations / 6 unknowns

$$|S_{12}|^2 + |S_{13}|^2 = 1$$
 $S_{31}^* S_{32} = 0$
 $|S_{21}|^2 + |S_{23}|^2 = 1$ $S_{21}^* S_{23} = 0$
 $|S_{31}|^2 + |S_{32}|^2 = 1$ $S_{12}^* S_{13} = 0$

Nonreciprocal Three-Port Networks

- two possible solutions
- circulators
 - clockwise circulation

$$S_{12} = S_{23} = S_{31} = 0$$

 $|S_{21}| = |S_{32}| = |S_{13}| = 1$

$$[S] = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

counterclockwise circulation

$$S_{21} = S_{32} = S_{13} = 0$$

$$|S_{12}| = |S_{23}| = |S_{31}| = 1$$

$$[S] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Nonreciprocal Three-Port Networks

circulator often found in duplexer

Mismatched Three-Port Networks

 A lossless and reciprocal three-port network can be matched only on two ports, eg. 1 and 2:

Mismatched Three-Port Networks

A lossless and reciprocal three-port network

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & S_{33} \end{bmatrix}$$

$$[S] = \begin{bmatrix} 0 & e^{j\theta} & 0 \\ e^{j\theta} & 0 & 0 \\ 0 & 0 & e^{j\phi} \end{bmatrix}$$

$$[S] = \begin{bmatrix} 0 & e^{j\theta} & 0 \\ e^{j\theta} & 0 & 0 \\ 0 & 0 & e^{j\phi} \end{bmatrix}$$

- A lossless and reciprocal three- $S_{12} = e^{j\theta}$ $S_{12} = e^{j\theta}$ varphi = 0 $S_{12} = e^{j\theta}$ varphi = 0 varphi
 - a totally mismatched oneport

characterized by a 4x4 S matrix

$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix}$$

- the device is reciprocal if it does not contain:
 - anisotropic materials (usually ferrites)
 - active circuits
- to avoid power loss, we would like to have a network that is:
 - lossless, and
 - matched at all ports
 - to avoid reflection power "loss"

reciprocal

$$[S] = [S]^{t} S_{ij} = S_{ji}, \forall j \neq i$$
$$S_{12} = S_{21}, S_{13} = S_{31}, S_{23} = S_{32}$$

matched at all ports

$$S_{ii} = 0, \forall i$$
 $S_{11} = 0, S_{22} = 0, S_{33} = 0, S_{44} = 0$

then the S matrix is:

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & S_{14} \\ S_{12} & 0 & S_{23} & S_{24} \\ S_{13} & S_{23} & 0 & S_{34} \\ S_{14} & S_{24} & S_{34} & 0 \end{bmatrix}$$

reciprocal, matched at all ports, S matrix:

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & S_{14} \\ S_{12} & 0 & S_{23} & S_{24} \\ S_{13} & S_{23} & 0 & S_{34} \\ S_{14} & S_{24} & S_{34} & 0 \end{bmatrix}$$

- lossless network
 - all the power injected in one port will be found exiting the network on all ports

$$[S]^* \cdot [S]^t = [1] \qquad \sum_{k=1}^N S_{ki} \cdot S_{kj}^* = S_{ij}, \forall i, j$$
$$\sum_{k=1}^N S_{ki} \cdot S_{ki}^* = 1 \qquad \sum_{k=1}^N S_{ki} \cdot S_{kj}^* = 0, \forall i \neq j$$

$$S_{13}^* \cdot S_{23} + S_{14}^* \cdot S_{24} = 0 \quad / \cdot S_{24}^*$$

$$S_{14}^* \cdot S_{13} + S_{24}^* \cdot S_{23} = 0 \quad / \cdot S_{13}^*$$

$$S_{14}^* \cdot (|S_{13}|^2 - |S_{24}|^2) = 0$$

$$S_{12}^* \cdot S_{23} + S_{14}^* \cdot S_{34} = 0 \quad / \cdot S_{12}$$

$$S_{14}^* \cdot S_{12} + S_{34}^* \cdot S_{23} = 0 \quad / \cdot S_{34}^*$$

$$S_{23} \cdot (|S_{12}|^2 - |S_{34}|^2) = 0$$

- one solution: $S_{14} = S_{23} = 0$
- resulting coupler is directional

$$\begin{aligned} |S_{12}|^2 + |S_{13}|^2 &= 1 \\ |S_{12}|^2 + |S_{24}|^2 &= 1 \\ |S_{13}|^2 + |S_{34}|^2 &= 1 \\ |S_{24}|^2 + |S_{34}|^2 &= 1 \end{aligned}$$

$$|S_{12}| = |S_{34}|$$

$$|S_{24}|^2 + |S_{34}|^2 &= 1$$

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{34} & 0 \end{bmatrix}$$

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{34} & 0 \end{bmatrix} \qquad \beta - \frac{1}{2}$$

$$|S_{12}| = |S_{34}| = \alpha$$
 $|S_{13}| = |S_{24}| = \beta$

 β – voltage coupling coefficient

We can choose the phase reference

$$S_{12} = S_{34} = \alpha \qquad S_{13} = \beta \cdot e^{j\theta} \qquad S_{24} = \beta \cdot e^{j\phi}$$

$$S_{12}^* \cdot S_{13} + S_{24}^* \cdot S_{34} = 0 \qquad \rightarrow \qquad \theta + \phi = \pi \pm 2 \cdot n \cdot \pi$$

$$\left| S_{12} \right|^2 + \left| S_{24} \right|^2 = 1 \qquad \rightarrow \qquad \alpha^2 + \beta^2 = 1$$

 The other possible solution for previous equations offer either essentially the same result (with a different phase reference) or the degenerate case (2 separate two port networks side by side)

$$S_{14}^* \cdot (|S_{13}|^2 - |S_{24}|^2) = 0$$
 $S_{23} \cdot (|S_{12}|^2 - |S_{34}|^2) = 0$

- A four-port network simultaneously:
 - matched at all ports
 - reciprocal
 - lossless
- is always directional
 - the signal power injected into one port is transmitted only towards two of the other three ports

$$[S] = \begin{bmatrix} 0 & \alpha & \beta \cdot e^{j\theta} & 0 \\ \alpha & 0 & 0 & \beta \cdot e^{j\phi} \\ \beta \cdot e^{j\theta} & 0 & 0 & \alpha \\ 0 & \beta \cdot e^{j\phi} & \alpha & 0 \end{bmatrix}$$

- two particular choices commonly occur in practice
 - A Symmetric Coupler (90°) $\theta = \phi = \pi/2$

$$[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{bmatrix}$$

• An Antisymmetric Coupler (180°) $\theta = 0, \phi = \pi$

$$[S] = \begin{vmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{vmatrix}$$

Directional Coupler

$$|S_{12}|^2 = \alpha^2 = 1 - \beta^2$$

$$\left|S_{13}\right|^2 = \beta^2$$

Coupling

$$C = 10\log\frac{P_1}{P_3} = -20\cdot\log(\beta)[dB]$$

Directivity

$$D = 10\log\frac{P_3}{P_4} = 20 \cdot \log\left(\frac{\beta}{|S_{14}|}\right) [dB]$$

Isolation

$$I = 10\log\frac{P_1}{P_4} = -20 \cdot \log|S_{14}| \text{ [dB]}$$

$$I = D + C , [dB]$$

© John Wiley & Sons, Inc. All rights reserved.

Balanced amplifiers

Power dividers

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

- 6 equations / 3 unknowns
 - no solution is possible
- A three-port network cannot be simultaneously:
 - reciprocal
 - lossless
 - matched at all ports
- If any one of these three conditions is relaxed, then a physically realizable device is possible

- consists in splitting an input line into two separate output lines
- available in various technologies for the lines

if the lines are lossless, the network is reciprocal, so it cannot be matched at all ports simultaneously

 there may be fringing fields and higher order modes associated with the discontinuity at such a junction

- the stored energy can be accounted for by a lumped susceptance: B
- Designing the power divider targets matching to the input line Z₀
 - outputs (unmatched, Z_1 and Z_2) can be, if needed, matched to Z_0 ($\lambda/4$, binomial, Chebyshev)

$$Y_{in} = j \cdot B + \frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$$

- If the transmission lines are assumed to be lossless, then the characteristic impedances are real
- the matching condition can be met only if B ≅ o thus the matching condition is:

$$\frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$$

In practice, if **B** is not negligible, some type of discontinuity compensation or a reactive tuning element can usually be used to cancel this susceptance, at least over a narrow frequency range.

if V_o is the voltage at the junction, we can compute how the input power is divided between the two output lines

$$P_{in} = \frac{1}{2} \cdot \frac{V_0^2}{Z_0}$$

$$P_1 = \frac{1}{2} \cdot \frac{V_0^2}{Z_1}$$

$$P_2 = \frac{1}{2} \cdot \frac{V_0^2}{Z_2}$$

$$P_2 = \frac{1}{2} \cdot \frac{V_0^2}{Z_2}$$

$$P_2 = \frac{1}{2} \cdot \frac{V_0^2}{Z_2}$$
(lossless/input matching)

$$\frac{P_1}{P_2} = \frac{Z_2}{Z_1} = \alpha$$
 (power division between the two output lines)

$$P_{1} = P_{in} \cdot \frac{Z_{2}}{Z_{1} + Z_{2}}$$
 $P_{2} = P_{in} \cdot \frac{Z_{1}}{Z_{1} + Z_{2}}$

$$P_{1} = P_{in} \cdot \frac{\alpha}{1+\alpha} \qquad P_{2} = P_{in} \cdot \frac{1}{1+\alpha}$$

 $Z_1 = Z_0 \cdot \left(1 + \frac{1}{\alpha}\right) \qquad Z_2 = Z_0 \cdot \left(1 + \alpha\right)$

S matrix

- lossless (unitary matrix)
- reciprocal (symmetrical matrix)
- input port is matched $S_{11} = 0$

$$P_{2} = P_{1} \cdot \frac{\alpha}{1+\alpha}$$
 $S_{21} = S_{12} = \sqrt{\frac{\alpha}{1+\alpha}}$ $P_{3} = P_{1} \cdot \frac{1}{1+\alpha}$ $S_{31} = S_{13} = \sqrt{\frac{1}{1+\alpha}}$

the reflection coefficients seen looking into the output ports

$$\begin{split} S_{22} &= \Gamma_1 = \frac{Z_0 \mid\mid Z_2 - Z_1}{Z_0 \mid\mid Z_2 + Z_1} = -\frac{1}{1 + \alpha} \\ S_{33} &= \Gamma_2 = \frac{Z_0 \mid\mid Z_1 - Z_2}{Z_0 \mid\mid Z_1 + Z_2} = -\frac{\alpha}{1 + \alpha} \end{split}$$

Unitary matrix, columns 1 and 2

$$0 - \frac{1}{1+\alpha} \cdot \sqrt{\frac{\alpha}{1+\alpha}} + x \cdot \sqrt{\frac{1}{1+\alpha}} = 0$$

$$S_{23} = S_{32} = \frac{\sqrt{\alpha}}{1+\alpha}$$

$$[S] = \begin{bmatrix} 0 & \sqrt{\frac{\alpha}{1+\alpha}} & \sqrt{\frac{1}{1+\alpha}} \\ \sqrt{\frac{\alpha}{1+\alpha}} & -\frac{1}{1+\alpha} & \frac{\sqrt{\alpha}}{1+\alpha} \\ \sqrt{\frac{1}{1+\alpha}} & \frac{\sqrt{\alpha}}{1+\alpha} & -\frac{\alpha}{1+\alpha} \end{bmatrix}$$

- 3dB divider
 - equal splitting of the power between the two outputs

•
$$Z_1 = Z_2 = 2 \cdot Z_0$$
, $\alpha = 1$

$$[S] = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

If we add $\lambda/4$ transformers to match outputs to Z_0 S matrix:

$$[S] = \begin{bmatrix} 0 & -\frac{j}{\sqrt{2}} & -\frac{j}{\sqrt{2}} \\ -\frac{j}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{j}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Example

• Design a lossless T-junction divider with a 30Ω source impedance to give a 3:1 power split. Design quarter-wave matching transformers to convert the impedances of the output lines to 30Ω . (Pozar problem)

$$\begin{split} P_{in} &= \frac{1}{2} \cdot \frac{V_0^2}{Z_0} \qquad \begin{cases} P_1 + P_2 = P_{in} \\ P_1 : P_2 = 3 : 1 \end{cases} \Rightarrow \begin{cases} P_1 = \frac{1}{4} \cdot P_{in} \\ P_2 = \frac{3}{4} \cdot P_{in} \end{cases} \\ P_1 &= \frac{1}{2} \cdot \frac{V_0^2}{Z_1} = \frac{1}{4} \cdot P_{in} \qquad Z_1 = 4 \cdot Z_0 = 120 \Omega \\ P_2 &= \frac{1}{2} \cdot \frac{V_0^2}{Z_2} = \frac{3}{4} \cdot P_{in} \end{cases} \qquad \begin{aligned} Z_1 &= 4 \cdot Z_0 = 120 \Omega \\ Z_1 &= 40 \Omega \parallel 120 \Omega = 30 \Omega \end{aligned} \end{split}$$
 Input match check
$$Z_{in} = 40 \Omega \parallel 120 \Omega = 30 \Omega$$

quarter-wave transformers $Z_c^i = \sqrt{Z_i \cdot Z_L}$

$$Z_c^1 = \sqrt{Z_1 \cdot Z_L} = \sqrt{120\Omega \cdot 30\Omega} = 60\Omega$$
 $Z_c^2 = \sqrt{Z_2 \cdot Z_L} = \sqrt{40\Omega \cdot 30\Omega} = 34.64\Omega$

Resistive Divider

- If a three-port divider contains lossy components, it can be made to be:
 - reciprocal

matched at all ports

The impedance Z, seen looking into the Zo/3 resistor followed by a terminated output line:

$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$

The input line will be terminated with a Zo/3 resistor in series with two such lines Z in parallel

$$Z_{in} = \frac{Z_0}{3} + \frac{1}{2} \cdot \frac{4Z_0}{3} = Z_0$$

so it will be matched: $S_{11} = 0$

from symmetry:
$$S_{11} = S_{22} = S_{33} = 0$$

Resistive Divider

- If a three-port divider contains lossy components, it can be made to be :
 - reciprocal
 - matched at all ports $S_{11} = S_{22} = S_{33} = 0$

If the voltage at port 1 is V1, then by voltage division the voltage V at the junction is:

$$V = V_1 \cdot \frac{Z/2}{Z/2 + Z_0/3} = V_1 \cdot \frac{2Z_0/3}{2Z_0/3 + Z_0/3} = \frac{2}{3} \cdot V_1$$

The output voltages are, again by voltage division:

$$V_2 = V_3 = V \cdot \frac{Z_0}{Z_0 + Z_0/3} = \frac{3}{4} \cdot V = \frac{1}{2} \cdot V_1$$

$$S_{21} = S_{31} = \frac{1}{2}$$

from symmetry:
$$S_{21} = S_{31} = S_{23} = \frac{1}{2}$$

© John Wiley & Sons, Inc. All rights reserve

Resistive Divider

- If a three-port divider contains lossy components, it can be made to be :
 - reciprocal (S matrix is symmetrical) $S_{21} = S_{31} = S_{23} = \frac{1}{2}$
 - matched at all ports $S_{11} = S_{22} = S_{33} = 0$

S matrix:
$$[S] = \frac{1}{2} \cdot \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}$$

Powers:
$$P_{in} = \frac{1}{2} \cdot \frac{V_1^2}{Z_0}$$

$$P_2 = P_3 = \frac{1}{2} \cdot \frac{(1/2V_1)^2}{Z_0} = \frac{1}{8} \cdot \frac{V_1^2}{Z_0} = \frac{1}{4} \cdot P_{in}$$

Half of the supplied power is dissipated in the 3 resistors. The output powers are 6 dB below the input power level

Figure 7.7

Solon Wiley & Sons, Inc. All rights reserve

- Previous power dividers suffer from a major drawback, there is not isolation between the two output ports $S_{23} = S_{32} \neq 0$
 - this requirement is important in some applications
- The Wilkinson power divider solves this problem
 - it also has the useful property of appearing lossless when the output ports are matched
 - only reflected power from the output ports is dissipated

- one input line
- two $\lambda/4$ transformers

one resistor between the output lines

Figure 7.8 © John Wiley & Sons, Inc. All rights reserved.

Even/Odd Mode Analysis

- In linear circuits we can use the superposition principle
- advantages
 - reduction of the circuit complexity
 - decrease of the number of ports (main advantage)

Response (ODD + EVEN) = Response (ODD) + Response (EVEN)

We can benefit from existing symmetries!!

the circuit in normalized and symmetric form

Even/Odd Mode Analysis

even mode, symmetry plane is open circuit

looking into port 2, $\lambda/4$ transformer with 2 load $Z_{in2}^e = \frac{Z^2}{2}$

if
$$Z = \sqrt{2}$$

if $Z = \sqrt{2}$ port 2 is matched $Z_{in2}^e = 1$

$$V(x) = V^{+} \cdot \left(e^{-j\beta \cdot x} + \Gamma \cdot e^{j\beta \cdot x}\right)^{2}$$
 x=0 at port 1 x=- λ /4 at port 2

$$V_{2}^{e} = V(-\lambda/4) = jV^{+} \cdot (1-\Gamma) = V_{0} \qquad V_{1}^{e} = V(0) = V^{+} \cdot (1+\Gamma) = jV_{0} \cdot \frac{\Gamma+1}{\Gamma-1}$$

 Γ : reflection coefficient seen at port 1 looking toward the resistor of normalized value 2 from the transformer $Z=\sqrt{2}$ $\Gamma=\frac{2-\sqrt{2}}{2+\sqrt{2}} \qquad V_1^e=-jV_0\sqrt{2}$

$$\Gamma = \frac{2 - \sqrt{2}}{2}$$

odd mode, symmetry plane is grounded

looking from port 2 the $\lambda/4$ line is shortcircuited, impedance seen from port 2 is ∞

$$Z_{in2}^o = r/2$$

 $Z_{in2}^o = r/2$ if r = 2 port 2 is matched

$$Z_{in2}^o = 1 \longrightarrow V_2^o = V_0$$

in the odd mode all the power is dissipated in the r/2 resistor

input impedance in port 1

S parameters

$$\begin{split} Z_{in1} &= \frac{1}{2} \Big(\sqrt{2} \, \Big)^2 = 1 & S_{11} = 0 \\ Z_{in2}^e &= 1 & Z_{in2}^o = 1 & \text{and} & Z_{in3}^e = 1 & Z_{in3}^o = 1 \\ S_{12} &= S_{21} = \frac{V_1^e + V_1^o}{V_2^e + V_2^o} = -\frac{j}{\sqrt{2}} \\ \text{and} & S_{13} = S_{31} = -\frac{j}{\sqrt{2}} \\ S_{23} &= S_{32} = 0 & \text{due to short or open at bisection, both eliminate transfer between the ports + reciprocal circuit} \end{split}$$

at design frequency (length of the transformer equal to $\lambda_o/4$) we have isolation between the two output ports

3 X Wilkinson = 4-way power divider

Figure 7.15
Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.

Directional couplers

Four-Port Networks

- A four-port network simultaneously:
 - matched at all ports
 - reciprocal
 - lossless
- is always directional
 - the signal power injected into one port is transmitted only towards two of the other three ports

$$[S] = \begin{bmatrix} 0 & \alpha & \beta \cdot e^{j\theta} & 0 \\ \alpha & 0 & 0 & \beta \cdot e^{j\phi} \\ \beta \cdot e^{j\theta} & 0 & 0 & \alpha \\ 0 & \beta \cdot e^{j\phi} & \alpha & 0 \end{bmatrix}$$

Directional Coupler

$$|S_{12}|^2 = \alpha^2 = 1 - \beta^2$$

$$\left|S_{13}\right|^2 = \beta^2$$

Coupling

$$C = 10\log\frac{P_1}{P_3} = -20\cdot\log(\beta)[dB]$$

Directivity

$$D = 10\log\frac{P_3}{P_4} = 20 \cdot \log\left(\frac{\beta}{|S_{14}|}\right) [dB]$$

Isolation

$$I = 10\log\frac{P_1}{P_4} = -20 \cdot \log|S_{14}| \text{ [dB]}$$

$$I = D + C$$
, $\lceil dB \rceil$

© John Wiley & Sons, Inc. All rights reserved.

Four-Port Networks

- two particular choices commonly occur in practice
 - A Symmetric Coupler $\theta = \phi = \pi/2$

$$[S] = \begin{vmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{vmatrix}$$

• An Antisymmetric Coupler $\theta = 0, \phi = \pi$

$$[S] = \begin{bmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{bmatrix}$$

Hybrid Couplers

Hybrid Couplers are directional couplers with 3 dB coupling factor

$$\alpha = \beta = 1/\sqrt{2}$$

The cuadrature (90°) hybrid

$$(\theta = \phi = \pi/2)$$

$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & j & 0 \\ 1 & 0 & 0 & j \\ j & 0 & 0 & 1 \\ 0 & j & 1 & 0 \end{bmatrix}$$

The 180° ring hybrid (rat-race)

$$(\theta = 0, \phi = \pi)$$

$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{bmatrix}$$

The cuadrature (90°) hybrid

Figure 7.21

© John Wiley & Sons, Inc. All rights reserved.

$$[S] = \frac{-1}{\sqrt{2}} \begin{bmatrix} 0 & j & 1 & 0 \\ j & 0 & 0 & 1 \\ 1 & 0 & 0 & j \\ 0 & 1 & j & 0 \end{bmatrix}$$

Even/Odd Mode Analysis

Even/Odd Mode Analysis

Figure 7.23 © John Wiley & Sons, Inc. All rights reserved.

$$b_1 = \frac{1}{2}\Gamma_e + \frac{1}{2}\Gamma_o$$
 $b_2 = \frac{1}{2}T_e + \frac{1}{2}T_o$

$$b_3 = \frac{1}{2}T_e - \frac{1}{2}T_o$$
 $b_4 = \frac{1}{2}\Gamma_e - \frac{1}{2}\Gamma_o$

Library of ABCD matrices

TABLE 4.1 ABCD Parameters of Some Useful Two-Port Circuits

Circuit	ABCD Parameters	
o	A = 1	B = Z
	C = 0	D = 1
Y	A = 1	B = 0
	C = Y	D = 1
Z_0 , $oldsymbol{eta}$	$A = \cos \beta \ell$	$B = jZ_0 \sin \beta \ell$
	$C = jY_0 \sin \beta \ell$	$D = \cos \beta \ell$

S parameters (from ABCD)

$$S_{11} = \frac{j\frac{Z_2}{Z_0} - Z_0 \left(-jY_S^2 Z_2 + jY_2\right)}{-2Y_S^2 Z_2 + j\frac{Z_2}{Z_0} + Z_0 \left(-jY_S^2 Z_2 + jY_2\right)} \qquad S_{12} = \frac{2\left[\left(-Y_S^2 Z_2\right)^2 - jZ_2 \left(-jY_S^2 Z_2 + jY_2\right)\right]}{-2Y_S^2 Z_2 + j\frac{Z_2}{Z_0} + Z_0 \left(-jY_S^2 Z_2 + jY_2\right)} \qquad \Gamma = S_{11} = \frac{j\left(z_2 - y_2 + y_S^2 Z_2\right)}{-2y_S^2 Z_2 + j\left(z_2 + y_2 - y_S^2 Z_2\right)} = S_{22}$$

$$\Gamma = S_{11} = \frac{j(z_2 - y_2 + y_S^2 z_2)}{-2y_S^2 z_2 + j(z_2 + y_2 - y_S^2 z_2)} = S_{22}$$

$$S_{21} = \frac{2}{-2Y'_S Z_2 + j\frac{Z_2}{Z_0} + Z_0 \left(-jY'_S^2 Z_2 + jY_2\right)} S_{22} = \frac{j\frac{Z_2}{Z_0} - Z_0 \left(-jY'_S^2 Z_2 + jY_2\right)}{-2Y'_S Z_2 + j\frac{Z_2}{Z_0} + Z_0 \left(-jY'_S^2 Z_2 + jY_2\right)} T = S_{21} = \frac{2}{-2y'_S Z_2 + j \left(z_2 + y_2 - y'_S^2 Z_2\right)} = S_{12}$$

Relation between two port S parameters

$$A = \sqrt{\frac{Z_{01}}{Z_{02}}} \frac{\left(1 + S_{11} - S_{22} - \Delta S\right)}{2S_{21}}$$

$$B = \sqrt{Z_{01}Z_{02}} \frac{\left(1 + S_{11} + S_{22} + \Delta S\right)}{2S_{21}}$$

$$C = \frac{1}{\sqrt{Z_{01}Z_{02}}} \frac{1 - S_{11} - S_{22} + \Delta S}{2S_{21}}$$

$$D = \sqrt{\frac{Z_{02}}{Z_{01}}} \frac{1 - S_{11} + S_{22} - \Delta S}{2S_{21}}$$

$$\Delta S = S_{11} S_{22} - S_{12} S_{21}$$

$$S_{11} = \frac{AZ_{02} + B - CZ_{01}Z_{02} - DZ_{01}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}}$$

$$S_{12} = \frac{2(AD - BC)\sqrt{Z_{01}Z_{02}}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}}$$

$$S_{21} = \frac{2\sqrt{Z_{01}Z_{02}}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}}$$

$$\boldsymbol{S}_{22} = \frac{-A\boldsymbol{Z}_{02} + B - C\boldsymbol{Z}_{01}\boldsymbol{Z}_{02} + D\boldsymbol{Z}_{01}}{A\boldsymbol{Z}_{02} + B + C\boldsymbol{Z}_{01}\boldsymbol{Z}_{02} + D\boldsymbol{Z}_{01}}$$

Matching and coupling factor

$$\Gamma_e = \frac{j \cdot (z_2 - y_2 + y_1^2 z_2)}{-2y_1 z_2 + j(z_2 + y_2 - y_1^2 z_2)}$$

$$\Gamma_o = \frac{j \cdot (z_2 - y_2 + y_1^2 z_2)}{2y_1 z_2 + j(z_2 + y_2 - y_1^2 z_2)}$$

$$T_e = \frac{2}{-2y_1 z_2 + j \cdot (z_2 + y_2 - y_1^2 z_2)}$$

$$T_o = \frac{2}{2y_1 z_2 + j \cdot (z_2 + y_2 - y_1^2 z_2)}$$

$$b_1 = 0 \Rightarrow z_2 - y_2 + y_1^2 z_2 = 0 \Rightarrow z_2^2 = \frac{1}{1 + y_1^2}$$

$$b_1 = 0$$
 $b_4 = 0$ $b_3 = -y_1 z_2$ $b_2 = -j z_2$

 $b_3 = -C$

 $b_2 = -j\sqrt{1 - C^2}$

$$b_3 = -\frac{\sqrt{y_2^2 - 1}}{y_2}$$
, $b_2 = -\frac{j}{y_2}$

$$b_{1} = \frac{\Gamma_{e} + \Gamma_{o}}{2} = \frac{z_{2}^{2} - (y_{2} - y_{1}^{2} z_{2})^{2}}{(2y_{1}z_{2})^{2} + (z_{2} + y_{2} - y_{1}^{2} z_{2})^{2}}$$

$$b_{2} = \frac{T_{e} + T_{o}}{2} = \frac{-2j(z_{2} + y_{2} - y_{1}^{2} z_{2})^{2}}{(2y_{1}z_{2})^{2} + (z_{2} + y_{2} - y_{1}^{2} z_{2})^{2}}$$

$$b_{3} = \frac{T_{e} - T_{o}}{2} = \frac{-4y_{1}z_{2}}{(2y_{1}z_{2})^{2} + (z_{2} + y_{2} - y_{1}^{2} z_{2})^{2}}$$

$$b_{4} = \frac{\Gamma_{e} - \Gamma_{o}}{2} = \frac{-2jy_{1}z_{2}(z_{2} - y_{2} + y_{1}^{2} z_{2})}{(2y_{1}z_{2})^{2} + (z_{2} + y_{2} - y_{1}^{2} z_{2})^{2}}$$

$$C = 10\log\frac{P_{1}}{P_{2}} = -20\log|b_{3}|, dB$$

$$-\frac{\sqrt{y_2^2-1}}{y_2}$$
, $b_2=-\frac{j}{y_2}$

$$\beta = \frac{\sqrt{y_2^2 - 1}}{y_2}$$

$$[S] = \begin{bmatrix} 0 & -j\sqrt{1-C^2} & -C & 0 \\ -j\sqrt{1-C^2} & 0 & 0 & -C \\ -C & 0 & 0 & -j\sqrt{1-C^2} \\ 0 & -C & -j\sqrt{1-C^2} & 0 \end{bmatrix}$$

The cuadrature (90°) hybrid

Example

Design a cuadrature (90°) hybrid working on 50 Ω , and plot the S parameters between

 $0.5f_0$ and $1.5f_0$, where f_0

is the frequency at which the length of the branches is $\lambda/4$

Solution

A cuadrature (90°) hybrid has C = 3dB, then $\beta = 1/\sqrt{2}$

$$y_2 = \sqrt{2}$$
 and $y_1 = 1$

 $Z_0 = 50\Omega$ the characteristic impedances will be:

$$Z_1 = Z_0 = 50\Omega$$
 $Z_2 = \frac{Z_0}{\sqrt{2}} = 35.4\Omega$

The cuadrature (90°) hybrid

The cuadrature (90°) hybrid

 eight-way microstrip power divider with six quadrature hybrids in a Bailey configuration

Figure 7.24
Courtesy of ProSensing, Inc., Amherst, Mass.

Datasheet

Model No.	Frequency Range (Ghz)	Coupling † (dB)	Freq. Sens. (dB)	Insertion Loss (dB)		– Directivity	VSWR max.	
				Excl. Cpld Pwr	True	(dB min.)	Primary Line	Secondary Line
MDC6223-6	0.5-1.0	6 ±1.00	±0.60	0.20	1.80	25	1.15	1.15
MDC6223-10	0.5-1.0	10 ±1.25	±0.75	0.20	0.80	25	1.10	1.10
MDC6223-20	0.5-1.0	20 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6223-30	0.5-1.0	30 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6224-6	1.0-2.0	6 ± 1.00	±0.60	0.20	1.80	25	1.15	1.15
MDC6224-10	1.0-2.0	10 ±1.25	±0.75	0.20	0.80	25	1.10	1.10
MDC6224-20	1.0-2.0	20 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6224-30	1.0-2.0	30 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6225-6	2.0-4.0	6 ±1.00	±0.60	0.20	1.80	22	1.15	1.15
MDC6225-10	2.0-4.0	10 ±1.25	±0.75	0.20	0.80	22	1.15	1.15
MDC6225-20	2.0-4.0	20 ±1.25	±0.75	0.15	0.20	22	1.15	1.15
MDC6225-30	2.0-4.0	30 ±1.25	±0.75	0.15	0.20	22	1.15	1.15
MDC6266-6	2.6-5.2	6 ±1.00	±0.60	0.20	1.80	20	1.25	1.25
MDC6266-10	2.6-5.2	10 ±1.25	±0.75	0.20	0.80	20	1.25	1.25
MDC6266-20	2.6-5.2	20 ±1.25	±0.75	0.20	0.25	20	1.25	1.25
MDC6266-30	2.6-5.2	30 ±1.25	±0.75	0.20	0.20	20	1.25	1.25
MDC6226-6	4.0-8.0	6 ±1.00	±0.60	0.25	1.90	20	1.25	1.25
MDC6226-10	4.0-8.0	10 ±1.25	±0.75	0.25	0.90	20	1.25	1.25
MDC6226-20	4.0-8.0	20 ±1.25	±0.75	0.25	0.30	20	1.25	1.25
MDC6226-30	4.0-8.0	30 ±1.25	±0.75	0.25	0.25	20	1.25	1.25
MDC6227-6	7.0-12.4	6 ±1.00	±0.50	0.30	2.00	17	1.30	1.30
MDC6227-10	7.0-12.4	10 ±1.00	±0.50	0.30	1.00	17	1.30	1.30
MDC6227-20	7.0-12.4	20 ±1.00	±0.50	0.30	0.35	17	1.30	1.30
*******	70101	00 400	0.50	2.22	0.00		4.00	la 7ana Nak 7kaa

The 180° ring hybrid (rat-race)

The 180° ring hybrid

- The 180° ring hybrid can be operated in different modes:
 - a signal applied to port 1 will be evenly split into two in-phase components at ports 2 and 3
 - input applied to port 4 it will be equally split into two components with a 180° phase difference at ports 2 and 3
 - input signals applied at ports 2 and 3, the sum of the inputs will be formed at port 1, while the difference will be formed at port 4 (power combiner)

Even/Odd Mode Analysis

Even/Odd Mode Analysis

$$S_{11} = \frac{jz_2y_s + jz_2 - j(y_2 + y_ey_sz_2) - jy_ez_2}{jz_2y_s + jz_2 + j(y_2 + y_ey_sz_2) + jy_ez_2}$$

$$S_{12} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_ey_sz_2) + jy_ez_2}$$

$$S_{21} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_ey_sz_2) + jy_ez_2}$$

$$S_{22} = \frac{-jz_2y_s + jz_2 - j(y_2 + y_ey_sz_2) + jy_ez_2}{jz_2y_s + jz_2 + j(y_2 + y_ey_sz_2) + jy_ez_2}$$

Even mode:

$$y_e = -jy_1$$
$$y_s = jy_1$$

$$S_{11e} = \frac{z_2 - y_2 - y_1^2 z_2 + 2jz_2 y_1}{z_2 + y_2 + y_1^2 z_2}$$

$$S_{12e} = S_{21e} = \frac{-2j}{z_2 + y_2 + y_1^2 z_2}$$

$$S_{22e} = \frac{z_2 - y_2 - y_1^2 z_2 - 2jz_2 y_1}{z_2 + y_2 + y_1^2 z_2}$$

Matching condition

$$y_1^2 + y_2^2 = 1$$

$$[S] = \begin{bmatrix} 0 & 0 & -jy_2 & jy_1 \\ 0 & 0 & -jy_1 & -jy_2 \\ -jy_2 & -jy_1 & 0 & 0 \\ jy_1 & -jy_2 & 0 & 0 \end{bmatrix}$$

Odd mode:

$$\begin{aligned} y_e &= jy_1 \\ y_s &= -jy_1 \end{aligned}$$

$$S_{11o} = \frac{z_2 - y_2 - y_1^2 z_2 - 2jz_2 y_1}{z_2 + y_2 + y_1^2 z_2}$$

$$S_{12o} = S_{21o} = \frac{-2j}{z_2 + y_2 + y_1^2 z_2}$$

$$S_{22o} = \frac{z_2 - y_2 - y_1^2 z_2 + 2jz_2 y_1}{z_2 + y_2 + y_1^2 z_2}$$

The 180° ring hybrid

$$[S] = \begin{bmatrix} 0 & -jy_2 & -jy_1 & 0 \\ -jy_2 & 0 & 0 & jy_1 \\ -jy_1 & 0 & 0 & -jy_2 \\ 0 & jy_1 & -jy_2 & 0 \end{bmatrix} = -j \begin{bmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{bmatrix}$$
$$C(dB) = -20\log(\beta) = -20\log(y_1)$$

Example

Design a ring (180°) hybrid working on 50 Ω , and plot the S parameters between 0.5 and 1.5 of the design frequency.

$$C[dB] = -20\log(y_1)$$

$$\sqrt{2}Z_0 = 70.7\Omega$$

© John Wiley & Sons, Inc. All rights reserved.

The 180° ring hybrid

Figure 7.46 © John Wiley & Sons, Inc. All rights reserved.

The 180° ring hybrid

Figure 7.43
Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.

Coupled Line Coupler

Coupled Lines

b) EVEN MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

- Even mode characterizes the common mode signal on the two lines
- Odd mode characterizes the differential mode signal between the two lines
- Each of the two modes is characterized by different characteristic impedances

c) ODD MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

Coupled Lines

Figure 7.26 © John Wiley & Sons, Inc. All rights reserved.

Coupled Lines

Figure 7.27 © John Wiley & Sons, Inc. All rights r

$$> c_{11} + c_{22}$$

Matching in Coupled Line Coupler

$$\begin{cases} Z_{ce} Z_{co} = Z_0^2 \\ \theta_e = \theta_o \end{cases}$$

Directivity and Coupling factor

modul impar

$$b_{3} = \frac{1}{2} (T_{e} - T_{o}) = 0$$

$$b_{4} = \frac{1}{2} (T_{e} + T_{o}) = \frac{\sqrt{1 - C^{2}}}{\cos(\theta) \sqrt{1 - C^{2}} + j\sin(\theta)}$$

$$C = \frac{Z_{ce} - Z_{co}}{Z_{ce} + Z_{co}}$$

$$[S] = \begin{bmatrix} 0 & C & 0 & -j\sqrt{1 - C^{2}} \\ C & 0 & -j\sqrt{1 - C^{2}} & 0 \\ 0 & -j\sqrt{1 - C^{2}} & 0 & C \\ -j\sqrt{1 - C^{2}} & 0 & C & 0 \end{bmatrix}$$

 $\theta = \pi/2$

Coupled Line Coupler

© John Wiley & Sons, Inc. All rights reserved.

$$[S] = -j \cdot \begin{bmatrix} 0 & \sqrt{1 - C^2} & jC & 0 \\ \sqrt{1 - C^2} & 0 & 0 & jC \\ jC & 0 & 0 & \sqrt{1 - C^2} \\ 0 & jC & \sqrt{1 - C^2} & 0 \end{bmatrix}$$

$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & j & 0 \\ 1 & 0 & 0 & j \\ j & 0 & 0 & 1 \\ 0 & j & 1 & 0 \end{bmatrix}$$

$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & j & 0 \\ 1 & 0 & 0 & j \\ j & 0 & 0 & 1 \\ 0 & j & 1 & 0 \end{bmatrix}$$

Normalized even- and odd-mode characteristic impedance design data for edge-coupled striplines.

Even- and odd-mode characteristic impedance design data for coupled microstrip lines on a substrate with $\varepsilon_r = 10$.

Coupled Line Coupler

Coupled Line Coupler

Figure 7.34

© John Wiley & Sons, Inc. All rights reserved.

Example

Design a coupled line coupler with 20 dB coupling factor, using stripline technology, with a distance between ground planes of 0.158 cm and an electrical permittivity of 2.56, working on 50Ω , at the design frequency of 3 GHz. Plot the coupling and directivity between 1 and 5 GHz.

Solution

$$C = 10^{-20/20} = 0.1$$

$$Z_{co} = 50\sqrt{\frac{0.9}{1.1}} = 45.23\Omega$$

$$Z_{ce} = 50\sqrt{\frac{1.1}{0.9}} = 55.28\Omega$$

$$Z_{ce} = Z_0 \sqrt{\frac{1+C}{1-C}}, Z_{co} = Z_0 \sqrt{\frac{1-C}{1+C}}$$

Simulation

- In schematics: >Tools>LineCalc>Start
- for Microstrip lines >Tools>LineCalc>Send to Linecalc

- 1. Define substrate (receive from schematic)
- 2. Insert frequency
- 3. Insert input data
 - Analyze: W,L → Zo,E or Ze,Zo,E / at f [GHz]

Synthesis: Zo,E → W,L / at f [GHz]

- Can be used for:
 - microstrip lines MLIN: W,L ⇔ Zo,E
 - microstrip coupled lines MCLIN: W,L,S ⇔ Ze,Zo,E

Multisection Coupled Line Couplers

Figure 7.35 © John Wiley & Sons, Inc. All rights reserved.

$$\frac{V_3}{V_1} = b_3 = \frac{jC\sin\theta}{\cos\theta\sqrt{1 - C^2} + j\sin\theta} = \frac{jCtg\theta}{\sqrt{1 - C^2} + jtg\theta} \approx \frac{jCtg\theta}{1 + jtg\theta} = jC\sin\theta e^{-j\theta}$$

$$\frac{V_2}{V_1} = b_2 = \frac{\sqrt{1 - C^2}}{\cos \theta \sqrt{1 - C^2} + j\sin \theta} \approx \frac{1}{\cos \theta + j\sin \theta} = e^{-j\theta}$$

$$C = \frac{V_3}{V_1} = 2j\sin\theta e^{-j\theta} e^{-j(N-1)\theta} \left[C_1 \cos(N-1)\theta + C_2 \cos(N-3)\theta + \dots + \frac{1}{2}C_{\frac{N+1}{2}} \right]$$

Example

Design a three sections coupled line coupler with 20 dB coupling factor, binomial characteristic (maximum flat), working on 50Ω , at the design frequency of 3 GHz. Plot the coupling and directivity between 1 and 5 GHz

Solution

$$\frac{d^n}{d\theta^n}C(\theta)\bigg|_{\theta=\pi/2}=0, n=1,2$$

$$C = \left| \frac{V_3}{V_1} \right| = 2\sin\theta \left[C_1\cos 2\theta + \frac{1}{2}C_2 \right] = C_1(\sin 3\theta - \sin \theta) + C_2\sin \theta$$

$$\frac{dC}{d\theta} = \left[3C_1\cos 3\theta + (C_2 - C_1)\cos \theta\right]\Big|_{\theta = \pi/2} = 0$$

$$\frac{d^2C}{d\theta^2} = \left[-9C_1 \sin 3\theta - (C_2 - C_1)\sin \theta \right] \Big|_{\theta = \pi/2} = 10C_1 - C_2 = 0$$

$$\begin{cases} C_2 - 2C_1 = 0.1 \\ 10C_1 - C_2 = 0 \end{cases}$$

$$\begin{cases} C_1 = C_3 = 0.0125 \\ C_2 = 0.125 \end{cases}$$

$$Z_{0e}^1 = Z_{0e}^3 = 50\sqrt{\frac{1.0125}{0.9875}} = 50.63\Omega$$

$$Z_{0o}^1 = Z_{0o}^3 = 50\sqrt{\frac{0.9875}{1.0125}} = 49.38\Omega$$

$$Z_{0e}^2 = 50\sqrt{\frac{1.125}{0.875}} = 56.69\Omega$$

$$Z_{0o}^2 = 50\sqrt{\frac{0.875}{1.125}} = 44.10\Omega$$

Simulare

The Lange Coupler

allows achieving coupling factors of 3 or 6 dB

Figure 7.38 © John Wiley & Sons, Inc. All rights reserved.

The Lange Coupler

Figure 7.39
© John Wiley & Sons, Inc. All rights reserved.

Circuit model

$$C_{in} = C_{ex} - \frac{C_{ex}C_{m}}{C_{ex} + C_{m}}$$

$$C_{ex} = C_{ex} + C_{in}$$

$$Z_{o4} = \frac{1}{vC_{o4}}$$

$$C_{e4} = \frac{C_e \left(3C_e + C_o\right)}{C_o + C_o}$$

$$C_{o4} = \frac{C_o \left(3C_o + C_e\right)}{C_e + C_o}$$

$$Z_{e4} = Z_{0e} \frac{Z_{0e} + Z_{0o}}{3Z_{0o} + Z_{0e}}$$

$$Z_{o4} = Z_{0o} \frac{Z_{0e} + Z_{0o}}{3Z_{0e} + Z_{0o}}$$

$$Z_0 = \sqrt{Z_{e4}Z_{o4}} = \sqrt{\frac{Z_{0e}Z_{0o}(Z_{0o} + Z_{0e})^2}{(3Z_{0o} + Z_{0e})(3Z_{0e} + Z_{0o})}}$$

$$C = \frac{Z_{e4} - Z_{o4}}{Z_{e4} + Z_{o4}} = \frac{3(Z_{0e}^2 - Z_{0o}^2)}{3(Z_{0e}^2 + Z_{0o}^2) + 2Z_{0e}Z_{0o}}$$

$$Z_{0e} = \frac{4C - 3 + \sqrt{9 - 8C^2}}{2C\sqrt{(1 - C)/(1 + C)}} Z_0$$

$$Z_{0o} = \frac{4C + 3 - \sqrt{9 - 8C^2}}{2C\sqrt{(1+C)/(1-C)}} Z_0$$

The Lange Coupler

Directional Couplers

Laboratory no. 2

Directional Coupler

© John Wiley & Sons, Inc. All rights reserved.

$$I = D + C$$
, dB

$$C = 10\log\frac{P_1}{P_2} = -20\cdot\log(\beta)[dB]$$

Directivitate

$$D = 10\log\frac{P_3}{P_4} = 20 \cdot \log\left(\frac{\beta}{|S_{14}|}\right) [dB]$$

Izolare

$$I = 10\log\frac{P_1}{P_4} = -20 \cdot \log|S_{14}| \text{ [dB]}$$

The cuadrature (90°) hybrid

Quadrature coupler

The 180° ring hybrid (rat-race)

Figure 7.46 © John Wiley & Sons, Inc. All rights reserved.

Ring coupler

Figure 7.43
Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.

Coupled Line Coupler

Figure 7.34

© John Wiley & Sons, Inc. All rights reserved.

Coupled line coupler

Contact

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro